Regression Based Non-frontal Face Synthesis for Improved Identity Verification

نویسندگان

  • Yongkang Wong
  • Conrad Sanderson
  • Brian C. Lovell
چکیده

We propose a low-complexity face synthesis technique which transforms a 2D frontal view image into views at specific poses, without recourse to computationally expensive 3D analysis or iterative fitting techniques that may fail to converge. The method first divides a given image into multiple overlapping blocks, followed by synthesising a nonfrontal representation through applying a multivariate linear regression model on a low-dimensional representation of each block. To demonstrate one application of the proposed technique, we augment a frontal face verification system by incorporating multi-view reference (gallery) images synthesised from the frontal view. Experiments on the pose subset of the FERET database show considerable reductions in error rates, especially for large deviations from the frontal view.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On transforming statistical models for non-frontal face verification

We address the pose mismatch problem which can occur in face verification systems that have only a single (frontal) face image available for training. In the framework of a Bayesian classifier based on mixtures of gaussians, the problem is tackled through extending each frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several impl...

متن کامل

Statistical Transformation Techniques for Face Verification Using Faces Rotated in Depth

In the framework of a Bayesian classifier based on mixtures of gaussians, we address the problem of non-frontal face verification (when only a single (frontal) training image is available) by extending each frontal face model with artificially synthesized models for non-frontal views. The synthesis methods are based on several implementations of Maximum Likelihood Linear Regression (MLLR), as w...

متن کامل

Augmenting Frontal Face Models for Non-Frontal Verification

In this work we propose to address the problem of non-frontal face verification when only a frontal training image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with artificially synthesized models for non-frontal views. In the framework of a Gaussian Mixture Model (GMM) based classifier, two techniques are proposed for the synthesis: UBMdiff and LinReg. ...

متن کامل

Face Verification Using Synthesized Non-frontal Models

In this report we address the problem of non-frontal face verification when only a frontal training image is available (e.g. a passport photograph) by augmenting a client’s frontal face model with artificially synthesized models for non-frontal views. In the framework of a Gaussian Mixture Model (GMM) based classifier, two techniques are proposed for the synthesis: UBMdiff and LinReg. Both tech...

متن کامل

Learning-based Face Synthesis for Pose-Robust Recognition from Single Image

A major challenge for automatic face based identity inference is the shear magnitude of uncontrolled factors than can result in a considerable change of shape and appearance, such as expression, illumination and pose. The problem is complicated further when only one image per person is available for training. In this paper we present an approach that uses a data driven and computationally effic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009